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In the problem of diffraction of a wave of arbltrary form by a wedge, 1t 1is
shown how to obtain any number of terms of the geometric acoustical expansion
of the diffracted wave near its front from the known solution of the problem
of diffraction of a plane wave by the same wedge. The method which is set
forth provides the exact solution in the entire reglon for certain problems
of diffraction of cylindrical and spherical waves.

1, We consider the two-dimensional problem of diffraction of a wave of
arbitrary form with curved or straight front by an obstacle in the form of
an angle (wedge). The wave propagation is deseribed by Equation

Ult = U;r_x + Uyy] (11)

in the region 0 < g < a , where Z =7rcos¢,y = rsing, 0 < a < 2x.
For ¢t < O the function y(¢,x,y) 1s specified (the incident wave). On
the faces of the wedge, o = O and ¢ = a , boundary conditions of the
three types

oU ou AU . :

@ U =0, (p) Fri 0, (c) a7 = Car (c = 0) ('1.2)
are given, where a/an is the derivative 1in the direction of the inner nor-
mal to the boundary. We do not exclude cases in which one of conditions
(1.2) is given on one face and a different one on the other face. When the
incident wave is plane, the exact solution of this problem 1s known [1 and
2]. The problem of diffraction for any boundary condition of the form

"y

(u) = sa o [ | 1.3
\ - L & ur, . ( o
pratr=n 1 0tPax10y" )

can be solved by this same method if the solution for the problem of dif-
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Diffraction of an arbitrary acoustic wave by a wedge 373

fraction of a plane wave with the same boundary conditlons has previously
been found (e.g. by the method of [2]),

M a)

Let the front of the 1ncident
wave MN reach the vertex of the
angle at the instant ¢ = 0O and
let the ray which strikes this
polnt make an angle 8 with the
Ox-axls (Filg. 1); U = O ahead of t<0
the front. The wave fronts are
shown in Fig. 1 1n the case when

N

Fig. 1

n/2< B <a~-mn . All the results remain valid for other relations between
a and B . It is only necessary to take into account that the number and
location of the reflected waves will then be different.

2. We represent the solution ¢ for ¢ > 0 in the form [ = u+v+y .
The functlion u is equal to zero inside the angle (0D (Fig. 1b) and takes
on the same values outslde this angle which the incildent wave would have
were there no obstacle. The function v 1is nonzero only in the region 0Bx
and takes on the same values there that the reflected wave would have if the
entire straight line y = 0 were the boundary instead of the angle. The
reflected wave is found by well-known methods (see below Section 5).

The functlon  1s the diffracted wave which 1s to be found. Clearly,
w # 0 only in the clrcle 4pCD .

In order that the function ¢ =y +v+y be continuous and represent the
solution of the problem which has been stated, the function yp must satisfy
the following requirements. In each of the sectors A0®, BoC and ¢pp 1t
is bounded and satisfies Equation (1.1); on the sides of the wedge (¢4 and
0D 1w satisfles the boundary conditions (a)(1.2), (b)}(1.2), or (c¢)(2.2);
on the arcs 4B, BC and (D we have p = 0; on the radli ¢¢ and (F
the discontinultles o the function p and of its derivative 1n the direction
normal to the radius are equal 1in magnitude and opposite in sign to the dis-
continuities of the function uy+v and of 1ts derivative, 1i.e.

[w]n+B = I“I‘O (t, r), [LU]n_B = “,1 ([, r)

ow ow 1
[a_n]rwﬁ = Vg (11 I‘), [ﬁJﬁ—B ="V (t7 r)v Frar s g

where yg, M1 Vo @nd v, are known functlons defined for O < r < ¢t ; the
the symbol [ ] denotes the magnitude of a discontinuity, for example

Wl p=wt,r,a+B8+0)—w(t,rna+pg—0)

3. Let u*(t,x,y) be the solution of the problem of diffraction of the
plane wave which 1s specifled for ¢ < O by Formulas

__J0 for t —zxzcosB—uysinf
U* (¢, z,9) —{1 for t;—xCOSB—ysinB (31)
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The solution was obtained in [1] for the case of the boundary conditions
(a)(1.2) and (b)(1.2) and in [2] for the case {c)(1.2). The specific form
of thils solution 1s not needed at this point. Let jb(T) be a function which
1s equal to zero for t< O .

We set
. (%) _S = (L) fo (s)ds  (i>0), I'())1s a gamma function(3.2)
()]
Us (t, z, y) _——-\ Us(t—s,z,9) f,{)ds (=012...) (3.3)
()
Then 1+1( ) = f (1) for i>0
UP (t,z,y) &= f, (t + z cos B + y sin B) (t<<0) (3.4)

By virtue of (3.3) each of the functions y,° satidfies Equation (1.1)
and the same boundary conditions as the function ¢*. And so, U,° 1s the
solution of the problem of diffraction of the plane wave of the form (3.4).

As in Sectlon 2, we shall represent ¢,° in the form

U® = u® + »° + w® for £ >0
Then

wi°l_, =f (¢ —7), [ow;° / 8n]n+B =

—+B
Taking f, (1) = t%/nt we obtain functions 1 with discontinuitles of the

form ¢,.T", where T =1 —r

In order to obtaln functions g with the discontinuities ¢, r'rk, we
differentiate y,° with respect to the angle 8 . Considering that fH=fi-1
we obtain from (3.4)

au P o e
B — /i, €+ §), o —&f ¢+ 8+, t+E (3.5
for ¢ < O, where
. 3 . an
E = zcosB + ysinj, n:—a—BzxsmB——ycosB, W:&
so that for any functlon u
du Ou 6
Fl —Ean n—af (3.6)
We introduce the notation (% 7)

= ) 2] () e
Um = A U°
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Since the unctions [,* are derivatives of the solution U,° with respect
to the parameter 8 , they satlsfy Equation (1.1) and the boundary conditions.
For ¢t < Q0 they are the waves with plane fronts obtained from (3.4) in
accordance with Formula (3.8). As in Section 2, we set

Um = u™ + o™ + wm

In order to compute the discontinuities of the functions g, * and of their
derivatives on 0C 1t 1s necessary, according to Section 2, to find the
values of ¢, * and BU,‘/an on € under the assumption that the obstacle
(wedge) is absent. The functions U,* will then be expressed by Formulas
(3.4), (3.7) and (3.8) for ¢ > O also. It can be seen from (3.5) and (3.6)
that 23*0,°/ 3" 1s an even function of n for even m and an odd function for
odd m . Sinceon ¢C, l.e. p=mn +B , we have n = O and 3/ an = 3/3n,
then

2k~1 _ 8U1'2k _
Ui LMB = O, “on 4B =0 (39)
We shall now prove by induction that (3.10)
U =@k — DN AT 00— 1) (@k—)1=135 ... 2k—1),(—Dil=1)

This is true for % = 1 1in view of (3.8), (3.7) and (3.5) and since
g =—pr,n=0 on 0¢ . Let us assume that Formula (3.,10) is true for some
k>1. We have from (3.7) and (3.8),

a? \
. ok 9% ok ,
U2 = (55 + 1) U, @3.11)
By virtue of (3.6}, we have for any function 7

U U i 22U ou au

apE = §23n2 - 2§TI3§ '37l+ n? 9ET g 5’&‘” "'1517 (3.12}

As a consequence of the invarlance of the Laplaclan operator under rotation
of the coordinate axes, it follows from (1.1} that

AU [ a2 = U [ 9% 4 AU | a?
From this result and from (3.12) we obtain on 0o¢ , i.e, for n = 0,

§ = —pr
*U a*y 8%y 4
55:‘“—”(5;?”5}?)"5: (3.13)

Now we get Ui2k+2 IM-B = (2k 4+ DI "kﬂfi—k—x (t—r)

from (3.11), (3.13) and (3.10}.
Formula (3.10) 1s, therefore, valid for all % .

Since 3/an = 3/an = g '3/38 on 0C , we have from (3.6) to {3.10} that

Py
oU 2t N ..1.-U52k‘ = — (2k — ) rP3f, (6 — 1) (3.14)

an a+pt | E lneg =

Taking into account what has been sald about the dlscontinulties of the
functions ,*, we obtaln from {3.9), (3.10) and (3.14)
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ikl e = @k = DI Pt —7), k), =0
(3.15)
awﬁ’fﬂ [ ﬁwiiﬁ'l ]
K R Tl P A A

4, The diffracted wave i which is sought (see Section 2) will be ap-
proximated by the linear combination = Zoicw* of the functions pkwhich
were constructed in Section 3. The coefficlents ¢,, are chosen so that the
functions ' and awl/an have discontiauities on ¢¢ which are equal to
the o (t,r) and v, (¢,r) 1in (2.1) correct to infinitesimals of a specified
order in the vicinity of the point ¢ = O, » = 0 . This can be done if the
incident wave 1is represented by a sufficiently smooth function, since the

functions yu, and v, then have the Taylor expansion in t and r (= t—r)

s st N+
o =t = 2 2 gy T O (1) (1)
ou $—1 §—i~1 TN'Hrk I
Y= Tl 2@ ;Z bir om0 (W (4.2)

We take
fly=t/ N+l >0, j()=0 <O

By virtue of (3.15) the discontinuities of the function

8 s-i ')ka s=1 $-i-1 2Kb
1 S i ok N ik 2kl }
wu = 2 2 B) Wigy — 2 Z mr Witk+1 (4..5)
i=0 k=0 =0 K==0

and of the derivative ay'/dn on (¢ differ from ., and v, only by
o(m™¢*) and ot ¢t*-') . The discontinuitles on (0B will also differ only
slightly. (For the boundary conditions (a) (1.2) and (b) (1.2) this follows
from the well-known law of reflection v (f. x, y) = F u {t, z, — y); for
case {c) (1.2) 1t is proved in Section 6). The function u + v + yp' 1is an
approximate solution of the diffraction problem posed in Section 1. It dif-
fers from the exact solution u + v + p by the quantity y*_ » , which, as
is shown in Sectlion 7, 1s small in the zone near the front compared to the
functions y,* which enter into (4.3).

We remark , that in the derivation of Formulas (3.15) in Section 3 the
derivatives d'u;,, /8%, 1< 2k < 2s were used, These derivatives exist
if ¥ 1s sufficlently large. Therefore, Formula {4.3) is justified at
present only in the case when the incildent wave can be expanded according
to (4.1) and (4.2) with sufficiently large N, N > N, If, however, ¥ < ¥,,
let us integrate the incident wave (N,-—y) times with respect to ¢ . The
wave which 1s cbtained can be expanded in accordance with (4.1), (4.2) with
¥ =¥, . Therefore, the function (4.3) may be written for this wave., We
obtain the function ' for the incident wave given originally by differ-
entiatio% (¥, — ¥)times with respect to ¢ . This proves Formula (4.3) for
all N > 0.
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If the coefficlents ¢,, 1n the expression = Lo,y * are chosen so
that the discontinuities [uﬂ}n+ﬂ and [dw!/ 6n}n+ﬁ,which are determined with
the aid of Formulas (3.15), uniformly approximate the functions He and v,
in (2.1) in the entire region O < r <t <C!;, where ¢, 1s any constant,
then the functlon ' will serve as an approximation to the unknown diffrac-
ted wave w 1in the entlre cone z2 + y® <12 ;> (in the case of the

boundary conditions {a} (1.2) and (b), (1.2)). This follows from the estimates
of Section 7.

5, We shall now study some properties of the reflected wave. Let the
function U(z,x,y) satisfy: Equation (1.1) for ¢ > 0 in the regiony >0,
the boundary condition (1.3) for y = 0, and the initial conditions y= wlx,y)s
U= y{x,y) for t = 0. The solution y of Equation {1.1) in the region
—© < y < = having the initial conditions & = ¢ (Z, ¥). ¥; = P (2, ¥)for
y>0,and u =0, u; = 0for y < 0 is called the incident wave. The
functlon v = U — y 1s called the reflected wave.

Lemma on t he shifzt o f the boundary
Ir v(t,x,y) 1s the wave reflected from the boundary y = O , then for any
h > 0 the function Cad (X, P =v (t, 2,y +2h) in the veglon ¥ > — 4
1s a wave reflected from the boundary y = — h with the same boundary con-
ditions (1.3) (for the same initial conditions ¢ = o, U.=y¢, t = O, the
definitions belng extended to @ =y = O for y < 0),

Proof . It is easy to see that v(t,x,y)} =0 for 0y and that
for ¥ > — h the function

y*(t7 X, y) = u (tv x, y) _F' v (t1 r, Y + Zh)

satisfies Equation (1.1) and the boundary conditions indicated in Lemma. We
shall show that the functlon @* satisfies the boundary condition (1.3) for
y =-—h, l.e, that ¥{¢,x,h) = O, where N (¢, =, h) = 1 (U¥) [y=n We have

0 \ {a ) =
T @ my o+ 20),) = {5 L (0 (& 7,y + 20

p=-h
a
oyt _,

Analogous equations hold for 37(w)/3h =and for the second derivatives
with respect to h, ¢t and x . Since y and v satisfy Eguation {1.1),
a

2 a‘.! 82
(aﬁ—zgzv—-@z)f\’(t, z, by =0 (t=>0,h>0
Furthermore, ¥ (¢, #,0) = {{u+ v) |/, =0 by virtue of (1.3). Finally,
for t =0, h>0 wehaveN =0, gN/gr=0 (since y =0 for 0t — 1y,
v(t, z,y) = 0 for 0t < y). Thus the function ¥(t,x,n) satisfles the wave
equation and zero initial and boundary conditions. It 1s, therefore, equal
to zero.

Corollary. The function u{f,z,y —h) -+ v {t, z, y +h) satis-
fies the boundary conditlon (1.3} for y = O for any h > (J, i.e.

Lult,z,y —n)y+o(t,z,y + h)| =0 (5.1)

Y==0)
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We shall now establish the connectlon between the values of the incident
wave on the plane x sin g — y cos 8 = 0 and the reflected wave on the sym-
metric plane x sin g + y cos 8 = O in the case when the boundary condition
(1.3) is satisfled for y = O . We introduce new systems of coordinates r,
p, n which are different for the incident and reflected waves. For the
incident wave

p= —zcosB — ysinf{, n = xsinf — ycos §, T=1t—p

and for the reflected wave y 1s replaced by -y in these formulas.

Lemma . Let us assume that on the plane n = 0 Formulas
M M-i ri ; ou M1 M-i r" ;
w= 2 X o™), =2 2 byghtoe™y) (52
i=1 j=0 =1 j=0
are valld for the incident wave in the vicinity of the origin when [ > §p!
and that analogous formulas hold for the reflected wave v , but with the
coefficlents ¢,, and d,, . Then ¢;; (i +j < M) and d,, (1+ JsK~1)
depend only upon a4y (i + j < M), bij(i + i< M —1), the angle g and
on the coefficients Upur of the boundary condition {1.3). They do not de-
pend on the other parameters of the incident wave.

Proof . Weshall carry out the proof for the boundary conditlon
(¢} (1.2); 1in the case (1.3) the .arguments are similar. By virtue of (5.1)
we have

u,, {t, =, — b+ vy {t, z, B} — cu, {t, =, — By —ev, (t, z, B) = 0 for A >0
Transforming to 17, p, n, we get
(”p — U, o, + u.)sin B+ (v, — u,)cos B — ¢ (u, + v) =0 (5.3)

where the values of 7, p and n are one and the same for w and v

p=hsin B — zcos B, n = zsin B + hcosB, T==¢—p, A>0

And so Equation (5.3) 1s valid in some region of the space 1, p» n which
ad joins the origin coordinates. Differentiating (5.3) with respect to n
‘and making use of the fact that u and v satisfy Equation (1.1), 1i.e. the
equation 2U., =U, + U, , we obtain .4)

(pn = Upp = Ton T Ugy) 8in B Qo — 2uy — vy F uy ) c0s B—cury — ev, = 0

Substituting (5.2) and {5.3) into {5.4) and comparing coefficlents of
tipl/ 1t ft, we get

(c— sinB) ay,y ; + (c 4 sinB) ey ;= (6 jug = 94, ju) 8in B+ (dy; — by;) cos B

(c— sin B) By, + (e sin B) dyyy 5= (@ jyy — by, ja) Sin B+
+ (@5, jog = €, jog) 08 B 2 (04, jug "~ Giny, jun) COSB
where 4 =0, 1, 2,..., J =0, 1, 2..., with gg,= by,;= 0gy=do;= 0 .
Since ¢ + sin g # O , it is possible to find cl%’ J =0, i, 2s.0. Tlrst
C.

from these formulas, then 4,,, then ¢,,, dz;, € The assertion is then
proved.

N ot e . It can be shown that in the case of the boundary conditlons
(1.3)
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i i
281
ep; = kag; ¢y = Z (2 )!Ah (k) a5, 506 2 mAzs—l (k) by, 481
=1

G - 2
i = g C?:;)_!Am(k) bis, jra ¥ 2 @(SA%*I (k) — i Apein (k)) Qs itet1

where the j, are the same as in (3.7) and % = x(g) 1s the known reflection
coefficient for plane waves

k@ =— ;R—;:(_% , mB)= Z Epar cos’B sin'B 5.5)

prgt+r=n

6. We now estimate the discontinuities of the functions pi=yp and
3{w*—w)/on on (0B in the case of boundary condition (c¢) (1.2). Let the
functions #,(r), w', w be the same as in Section 4 and ' be the sum of
the solutions U, * constructed in Section 3 with the same coefficlents as
in Formula (4.3). Then, as in Section 2, {*= y'+ v'+ ', #here 1 is an
incident wave, v' the reflected wave, and ' the diffracted wave. 'The
function ' here is obviocusly the same as in (4.3). Since the function U4
the exact solution U =y + v + y , and the incldent waves u and u' are
continuous on 0B , i.e. for @ =n -8 , thenlw' —wl. 3 = — [ — v], 4.
The same conclusion can also be drawn concerning the derivatives 3/3n . The
coefficlents in Formula (4.3) have been chosen so that the functions i} and 3uw/an
on 0C have the same coefficients In 8 power series expansion in «+ and r
as y and 3u/don have in (4.1) and (4.2). Then according to the second
lemma of Section 5, the same holds for v', 3v'/an and v, 3p/3n on 08 ;
here ¥ =¥ +8 . Therefore

Vvl =0 (tM), O (et — v)/ Onlag = o (M)
From this 1t follows that
_ M 9 (! — w) Ml .
W' — wlp = o (M), [——&—_JR_B = o (MY (6.1)

To justify the applicabllity of this lemma it must be shown that the re-
flected wave exists and admlits an expansion analogous to (5.2). This follows
from [4] for a sufficlently smooth incident wave. It 1s even possible to
obtaln an explicit solution by the method which Sobolev used to find the
solution of the problem of propagation of elastic waves for the case of the
half plane [1], pp. 509-559.

T. We now estimate the difference ' —w . It follows from the preceding
that the function p* —yp satisfies Equation (1.1) in the region i < t ex-
cepting the planes ¢ =n —~ g8 and ¢ =n + g , which are represented by the
lines ¢p and ¢C in Fig. 1, where the function and 1its derivatives have
the discontinulities

[t —w) = (1, 1) = 0 (™), [m“la?l:ﬂ] = vE (e, ) =0 (1M

for 9o¢ ¢t =0, for OB t = 1 . Further, for r = ¢ the function - p
equals zero and for satisfies the boundary conditlons
(a) (1.2), (b) (1. 2), or (c) (1 2? we shall consider that the functions
uy* and v, * have derivatives up to the fourth arder. the xth derivatives of
u,* being equal to o M%), &k <4, and of v* — o (¥ %1y (tnis occurs if the
incldent wave 1is suf 1cient1y smooth) Let us replace ¢t by 1 +r and
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expand u,* and v,* according to Taylor's formula

p¥ = (0 ot () + et (), vi* = v (1) + vl (T, 7)
Obviously
”"io BN (TM), l,!.,i" =0 (TMal). 'V.io = 0 (TM_K)
lJ..iQ = 0 (tM~2)1 Vi1 =0 (thz), for t—0
In the cases of boundary conditions {a) (1.2) and (b) (1.2), let
=yt —w — W
o 1 -r {-r
W= 5{:’"\7{2 S w (¢t — s, 7, y) du (s) — S wl(t— s, 7,y dvy° (S)}

J=0 0 o
where % 1s the same as 1In Section 3, r®= x*+ 3. Then

IZ*]T;+B = "zlloz (177 l'), [62* /an],—;+ﬁ = "Vol (Ti l')
1t 1s easy to see that the discontinuitlies on (B are also equal to
r2 (tM72) and  ro (£M7%).

In the case of boundary condition {c¢) (1.2) it is also possible to con-
struct a functlon z* with discontinuities of the same order, but to do this
1t 1is necessary to add terms with discontinuities on only ¢F to the function
¥ (we shall not dwell on this point in greater detail).

Let us take a small A > 0O and construct a function 2z which coincides
with 2z* outside the sectors §,, defined by the inequalities

lp — Bt <A, r <4, (i==0, 18y =a+8B=a~—p

and which is continuous together with the derivative 3z/3¢ 1in these sectors,
including their lateral boundarles

C

My rvil
T (2725 sign (B, q) -+ g | (h—1g—3;N*  for [ g--3; [ <h

7 == ok
z Z

Then 2z satlsfles the same boundary conditions as w'— w and Equation
3 Sy T Iy = f (6 T, W) (7.1)

Here y = 0 outside S /= /h%o(tM®) in g . The last estimate fol-
lows from the properties of u,, v, and their derivatives., We now estimate
the "energy"

) i .
g == S.)S? (524 22+ z?f) dx dy

of the solution 2z at the instant ¢ = ¢;> 0 . Integrating by parts and
taking (7.1) into consideration, we obtain

dl . N

e S& s fdedy — \ 55,08

D i

where I 1s the boundary of the region p(0 < p < a) traversed in the posi-
tive direction, and z, 1s the derivative in the directlon of the inner
normal to I ; we note that 2 =0 for T >t . In the case of the boundary
condition (c) (1.2) we have 2z, = 0z,. so that the contour irtegral >0, and
in the cases {(a) {1.2) and (bg {1.2) it equals zero. Therefore,

dr
= <\ zjavay
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Making use of Schwartz's 1lnequality, we obtain

‘% < (SS 2%z dy SS frdz dy)l/z < (2E (1) \S frdz 'dy)l/z

A
ﬁ‘%g(zggfedxdy) <r@ML, y@®—-0 (-0

Intergrating and taking into account that E(0) = 0 , we get

4 ‘ M
E (1) <gpt™ max' v2 () = o(5}")
1<t
Let us estimate 2z near the front r, =¢ for ¢ > t, . Let Z, be

the zone at the front given by

t—rlr e 0<ep<a, lg—B >ty  (i=0,1), >0
T =t (1 — cosy).
It is easy to see that because of the finlteness of the velocity of propa-
gation of the waves, values of the function s 1n the sectors S, for t> ¢,

do not affect the values of 2z 1in the zone Z,. Slnce s = O outside these
sectors, the energy included in the zone Z at the instant ¢ , i.e.

RS 5 (z,*+ 2z 2+ zyz) dx dy

does not exceed the entire energy which was present at the instant ¢;, i.e.
E(t,). Thus, the energy of the solution z in the zone Z. near the front
equals o (TZM)

In this zone w;* = 0 (t¥*"*'%~"/ | Using the corresponding estimates for
the derivatives, we may conclude that the energy of the solution W 1s also
equal to 0(1:2 ). Thus, the energy of the solution p'— yp 1s equal to o(r~”‘
in this zone,

In Formula (4.3) Equations y,' were of the highest order of small quanti-
ties near the front; 1in the zone zZ,

i Netsily —t
wl=gl(r, r, ) T fap

where .3 18- a2 smooth function. Therefore, their energy in Che zone  Z,
1s equal to O (t*M), Thus, the error of Formula (4.3), i.e. p'-— 4, is an
infinitesimal of higher order compared to any term of this formula in the
zone Z. at the front as r - O .

8, In the case where the front of the incident wave is a circular arc
convenient formulas can be derived for any number of terms of the geometric
acoustical expansion of the diffracted wave. (This case is the most impor-
tant one, since it permits conslderation of the diffraction of a wave due
to a point source, and also of multiple diffraction by the vertices of a
polygon,* by a segment and by a slit).

We shall now indicate some properties of the geometrlc acoustlcal expansion
of an arbitrary wave with a circular front. For ¢ > t, let the front be an
arc of the circle p = t — t, (in polar coordinates p, 8), and let the wave
itcelf be specified by Formulas

* By a simpler method than this was done in [6].
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u=0 for r<0, u=Yy fi(v)A4ilp, 6) -+ Amis (T, 2, 8)  for t>0 (8.1)

i=0

Here the s, are the same as in (3.2),

v=t—ty—p, A <C [fn (5)]ds
0
Then (see [5], Formulas (27) and (3%4), where to transform to the notation
of this paper ¢ must be replaced by u , ¢ by o , ]q|‘§A, by 4,).

I I T N e
dp p YT op? p Op p? 002
From this,
1 1 (0% , 1 b(0)
A = a 6 N A = — =3 (——‘ o a) -
0T o ®) 1 20" \06 +22 + ph
where ga(8), »(8),... are arbitrury functions of § . First we examlne the

case In which these functions, beginning with p(e)}, are equal to zero. We
then obtain

SO e (e () e (3) - (et (=2

If the function g(8) 41s analytic, the series

co ir 8

(— 1)'Lyia (8)
S () = F (p, fo (1), @ (6)) (8.2)
24t pttie :

i=0
converges for O < 1/p < Yo, in which vy, depends only on the radius of con-
vergence of the power serles for gf(8) .

We now consider the case in which 3(8), ¢(8),... may aldo be nonzero.

Any wave (8.1) with a circular wave front may then be represented in the
form

u = Flp, fo(t), a(®) + Flp, f1(1), b(®) + F(p, fa(1), c(®) + -+ Bmis

where the remainder term R,,, 1s of the same order as 4X,, in (8.1). It
suffices, therefore, to examine the problem of diffraction of a wave of the
form (8.2).

Let the angle which glves rise to the diffraction be the same as in Flg.1,
and let r, p be polar coordinates with pole at the vertex of the angle; 0.
The center of the incident circular wave 1s the point 0, (r =R, o = B),
and p and § are polar coordinates with pole (,. The incldenty wave 1s
assumed to have the form (8.2), where

fi(r) = /T (N 4i+1) for v>0

In order to find the diffracted wave it 1s necessary (see Section %) to
expand the functions y and au/3n on 0C 1in Taylor serles in » (we huve
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r=p—R, /1 = p"'au/a8 on 00) and to substitute into (4.3) the coeffi-
clents obtained from (4.1) and (4.2},

(— O @i + 2k— )1 L,Ya b — & 1) 21+ 2k + Y LY, 0
ik = 2 (20)1 R+ ? = 2% (2i 4 1)1 RMEA
8 a
(L21+1" a0 L )

after setting 9§ =n + 8

We shall now write out the geometric acoustical expansion of the functions
w,! in {4.3). The solution v*(t,x,y) in Section 3 is a homogeneous function
of degree zero.

If fi{(t)=15" /T (N 4+ i+ 1) for 1> 0, then the functions u,' in
(3.3) and {3.8), and so also the diffracted waves w,', are of degree ¥ + p.
They can, therefore, be expressed by formulas of the form (8.2)

o —(— 1)*L m (@, B) NP LA
W' =2 g, Ty = Awy (8.3)
1=0

We find from [1] that in the case of boundary condition (a) (1.2}
- TP —Ty) =y =
=%V 5N 0tagTI, Ry
P Nr=—n=n—3
for the case (b) (1.2) 1t is only necessary to change the sign of the first

and fourth terms of the sum. For the case of boundary condition (c¢) (1.2)
the function m can be determined from [2].

=1

Substituting g,,, by,, w,' into (4.3) and setting s = » (using well-
known estimates for the derivatives of analytic functions, the absclute con~
vergence of all the serles obtalned can be proved for sufficlently small
v/r and 1/R ), we obtain

w oo 2p )P+’C’ Lfa(n+B) (AR M)
=333 e

j==0 p==0 =0

' 4y . 2p)!
J‘[,’ = { Zjif) L2?m ((9» B) * C;P = ZT.((%)—W

Noting that for any functions g and »
2p
I —
2} Cap (L1a) (Agp-ib) = Ly (ab)
=0
{this identity can be proved by induction on p }, we obtain

(—D"L an3; (8 (% + B) L,7m (@, B))
wl = E Z l (:3___ ])1 Rﬂ_j"'l:i-j*‘:f! fﬂ-;-l/’ (T)
n=s0 j=0

(8.4)
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This serles converges in some neighborhood of the front of the diffracted
wave. The sphere of convergence shrinks to zerc as we approach the singular
points 2 and ¢ (Fig. 1).

The formula {8.4) was obtained for an incident wave of the form (8.2},
where fi(1) = ™Y /T (N 4+ i+ 1)for 7> 0. If the solution for this
case is denoted by Uu(t,x,y), the solution ¢ for the case of any integra-
ble f,(r) which is equal to zero for 7 < O 1s the superposition of the
solutions g, (¢t —-s, x, y)

6N+l e
U e y) =) Un (€ —s.2,9) /o () ds (8.5)
]

since the incldent wave 1s a superposition of the same kind. PFrom this it
is easily found that Formula (8.4) is also valid for such g, . Here
fﬁ+y,(1) in (8.4) is expressed in terms of f,(t) by Formula (3.2).

9. We now apply the results which have been obtained to the problem of
aiffraction of the wave caused by the simplest point source acting at the
point r = R, ¢ = B at the instant ¢ =-—f , i.e. the wave

1
= — (t+R>p) (9.1)
2n V(¢ + Rp—¢?

Here p 1s the distance from the source to the point of observation.
Setting ¢ + R = p + T we obtain

1 T
U~ é—]/_QT_p— m for T— -0
Therefore, taking
a® ==, @ =15y fun®=1r
2¥ 2n I‘(’ nl

in {5.2) and (b.4), we find the diffracted wave p!.

In the cases of the boundary conditions (a} (1.2) and (b} (1.2} the formu-
las which have been obtained for ' can be simplified further if it is noted
that in these cases §*m / 3p* = m/ 6¢2S, s=1,2,..., and if the
jaentitvy min (s, §) )

Luly= 3 (= 12t (s + ! Losrsia
R T I e R R
q=
(which can be proved by induction on ) is used. The summation on j in
(0.4) is then carried out with the aid of the binomial theorem and the terms
containing 1,, with the same % are collected. We obtaln

1 o0 {— 1)?!L2km .ik_ - R + r +
VR 2 Pk "

wt =

From a compariton with (5.3), 1t follows that
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w (v, r, @) = V—-w (z, 71, 9)
Here y°{(r,7,p) 1s the diffracted wave for the incident plane wave
po o 1

T TM) Var
which approaches from the same direction g . Transforming from =t to
t =1+ r , we obtain
R 12— 2
1 =
wh (T, 7, ¢) VIR (+ —E ,r,@) (9.2)

Here u(t,r,e) 1s the diffracted wave for the incident plane wave which
1s given by Formulas

—— 1 =
U“VW t>—rcosie—B), U=0 ¢l —rcosie—p) (9.3)

for ¢t < O,

With the aild of {8.5) we get the solution of the problem of the diffraction
of the wave {9.3) o

U (t, rcp)—-TSU*(lus,rqp)?—— (9.4)
o

where U*{(t,r,o)} is the solution found by Sobolev of the problem of diffraction

of the wave (3.1). Replacing the solution y* in (9.4) by the diffracted

wave p* {(as in Section 2, U¥*= y*+ p*+ p*), we obtain function ul¢,r,o).

Formula (9.2) was derived with the ald of serles which converge in some
neighborhood of the front r =t and, consequently, at this stage 1t has
been proved only for this nelighborhood. We shall now prove that Formula
{9.2) is, in fact, valid throughout.

Theorem. If yu°(¢z,r,p) is a homogeneous solution of the wave
equatlon

o

2 @ °
Lu® = uy — ttpp — r~Yuy — r-2uy, =0
and is of degree —¢% in r and ¢ , then

t..___ re Y

ult,r,Q) =u (t +—=5 7 9) (9.5)

is also a solution of thls equation.

Proof . We have

tof e
«
N

2 -3 * 3 a 2
Lu = 3 (TuT’I‘ + rup, + o U ):: o (T”T + ro, -+
Here

z__,z
=t —5p—, v=uf
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v 1s a homogeneous function of degree — % . According to Euler's theorem
on homogeneous functions Top + ro,=—3y/2,1.e. Lu=0.

Note 1. The theorem is also valid for generalized solutions of the
wave equation.

By a generalized solution of the wave equation fy = O in the region p
we mean a function (or generalized function) wu , such that for any v which
has derivatives of all orders and 1s equal to zero 1n the neighborhood of
the boundary D and outside some finlte region

S\g ulydtdedy =0
.

Let u°(t,r,p) be a homogeneous generalized solution of degree —% in ¢
and r . We shall show that (9.5) is a generalized solution, 1.e. that

lZ_rZ
J= SSS u® (t-i- SR o q))Lz;dtrdrqu =0
D

We introdvce the notation

1 12— r2 v (t, T q))
sp=a, L4+ —p—=T, SR AUNLL /S .
2R=% ‘T IR Vitaartiar 00
Then
J=J, +J,
1 1
Jri= QSS u (T, r, ) (wTT W T W ww) rdrdTde
VDl -
Jo= SSS 4’ (T, r, @) (4Twpy + drwp, + 10wy) rdrdT dg
D,
Since u° 1s a generalized solution, J, = O . For the integral .j,, we
set
r=pl, (T, r,)=u (T, 0,9, wp (T, r,¢) =z(T,p,9)
Then

Jy = SSS VTu (T, p, @) 4T"2q + 10 T2) p dp dT do
B,

The expresslon in parentheses 1s equal to 46(T”%)[BTZ Integrating by
parts with respect to 7 and considering that /Tu,(T,p,y) does not depend
on T (as a consequence of the homogenelty of u1): and that in the nelghbor-
hood of the boundary =z = O , we obtain J,=0 .

Note 2. The analogous theorem is also valld for the equatilcn

Upp = Uxpx, + ..ot Ynxn’

if ° 1is a homogeneous solution of degree (1 — n)/2; here r= fo+u..+xf)é.

We now obtain solution of the problem of diffraction of a wave due to the

source. Let ¢ be the solution (9.4) of the problem of diffraction of the
plane wave {(9.3). By virtue of the theorem and Note 1, the function

1 tz_,.z
s Ult+55-, re) (9.6)

is a generalized solution. For ¢t < O

w(t, r,e)=
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1
2n YV (t + R)E— Rt —r2 4 2Rr cos (p — B)

u(t,r,e) =

on account of (9.3); 1.e. it coincides with the wave due to the source {9.1).
And so, for t > O the function {9.6) is the solution of the problem of
diffraction of the wave due to the source. (The solution of this problem,
expressed in another form, is known, see [7], Chapt. 5).

10, We shall now conslider the three-dimenslonal problem of diffraction
of a spherical wave due to a source by a dihedral angle (wedge) or by a cone.
In particular, we shall consider a polyhedral angle with boundary conditions
u =0 or au/an =0 . Let pr, o, 2z be cylindrical coordinates. The source
1s assumed to act at the instant ¢ = - R at thepoint r =p , ¢ =8 ,
z = 0 and the wave caused by the source to be

1
u—mé(t—}-ﬂ—d) (—RLi<0)
where g 1s the distance from the source, & 1s the delta function. The

wave first reaches the obstacle {a wedge with edge r = O or a cone with
vertex » =0, z = 0 ) at the origin of coordinates at the instant ¢ = O.
The solutlon 1y, of the problem of diffraction of the plane wave

o = 4 (¢ + 7 cos (9 — B) (¢ <0) (10.1)

1s taken as known for the same wedge or cone. In spherical coordinates p,
os4, where pr =p cos §y, z = p sin y, we have

oty 7@y 2) = Uy (1, 0,0, 9) = 7op 8 (L +peospeos @ —B) <o) (10.2)

For the wedge the solutlon does not depend on z and may be expressed

by Formula
1 aoU*

®~ ZnR 3t

where the functicn y* is the same as in Section 3; 1.e. U* is the solution
of the two-dimensional problem of diffraction of a plane wave by a wedge
which was found by Sobolev [1]. A method of numericdl solution has been
indicated by Borovikov [8] for some cases of the cone.

u

By virtue of Note 2, the function
12— o2
u (t’ p) (Pv ‘p) = Uz (t + —znfp , Py (P1 \P) ('10.3)

1s the solution of the wave equation; 1t obviously satisfles the boundary
conditions. Because of Formula (10.2) and the properties of the &-function

ald @) =8 (), 80 @N="5zL  (if 1@=0

we have
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u=233.‘..5((,: +RP—@) =78t +R—d) for —R<t<O

10 2 andenndAa
AV. 57 COLNnCLa

{ as -

\ < [
by the source. Equation (10.3) is then the solution of the problem of dif-
fractlion of a wave due to a point source by a wedge or & cone.

<t
[
w
*
1
s ]
A
+
A
o
<t
L 8

a rd bl Al o wesmaa
a 8 with the wave

In the case of wedge, this solution is known [9], but in the case of the
cone only the geometrlc acoustical expansion of the diffracted wave near tne
front has been avallable [10].
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